More Essays

October 2007


Getting Gold and Silver Out of Rocks:

Milling Ore at Bodie



Michael H. Piatt


After miners broke mineral-bearing ore from the surrounding rock and transported it from a mine, specialized machinery pulverized and ground the ore, then separated gold and silver from waste.  Buildings that contained this machinery were known as “stamp mills” or “quartz mills.”  Processing quartz ore required heavy piston-like vertical rods called “stamps” that dropped repeatedly on the rock, crushing it to powder.  The number of stamps served as the measure of a mill’s capacity.


            Nine quartz mills operated at Bodie during its boom:  the Syndicate mill, 16 stamps, built in 1865, increased to 20 stamps in 1878; Standard mill, 20 stamps, built in 1877; Miners mill, 4 stamps, 1878; Bodie mill, 10 stamps, 1878; Noonday mill, 30 stamps, 1879, increased to 40 stamps in 1881; Bulwer-Standard mill, 30 stamps, 1880; Spaulding mill, 10 stamps, 1880; Silver Hill mill, 10 stamps, 1881; and the Bodie Tunnel mill, 15 stamps, 1881.


The challenges facing Bodie’s millmen centered on recovering an acceptable amount of gold (alloyed with silver) and silver (combined in sulphurets) within time constraints at minimum cost from tons of ore.  Gold and silver sulphurets share high specific gravities, a property that allowed milling machinery to separate them from waste rock by gravity.  When washed in water, gold, silver sulphurets, and rock particles that contain them, tend to settle more quickly than barren rock particles, allowing the precious metals to be trapped.


            Another useful characteristic of gold, and to a lesser degree silver sulphurets, is an affinity for mercury.  Gold particles readily adhere to mercury, forming an “amalgam.”  Mercury, known among western miners as “quicksilver,” is a metal that is liquid at room temperature, extremely dense, and sinks in water.  Mercury also repels sand, assuring that it will attach to gold and silver-bearing compounds then separate from barren rock particles.


Sulphurets, while enjoying high specific gravities, tend to resist amalgamating with mercury.  Their aversion to mercury complicated removing them from crushed ore, and millmen went to considerable lengths to coax sulphurets to amalgamate.


            Employing 1870s technology, all nine quartz mills (and two tailings mills) at Bodie used a form of “pan amalgamation” known as the “Washoe Process,” developed at Washoe two decades earlier to handle the Comstock’s obstinate silver ores.  Pan amalgamation borrowed methods from Mexico, where two ancient animal- and man-powered techniques had been processing silver ore since the seventeenth century.  The Patio and Cazo processes required grinding ore very finely, introducing mercury, water, and chemicals, then heating the mixture under the sun for extended periods while allowing the rich, dense amalgam to separate from the waste.  The Washoe Process mechanized these steps under steam power to achieve scales of production befitting America’s industrial age.


            Other large-scale, industrialized ore-milling methods had been implemented in silver-mining districts beyond the Comstock, but the Washoe Process consumed the least amount of energy—an attribute essential at Bodie, where the ore contained silver as well as gold, and which was isolated from a fuel source.  Other available processes, such as the Reese River Process, lixiviation, and leaching would have attained higher yields at Bodie, but they required roasting furnaces that were prohibitively expensive to fuel.  Also on the list of rejected processes were those requiring large volumes of costly chemicals, such as chlorination.(1)  Smelting would have attained the best results, but was not used at Bodie because it required a fuel supply vast enough to sustain temperatures that melted the target metals.  Transportation costs, whether importing fuel or chemicals, or exporting rocks, proved to be a decisive factor for the remote district.


            Bodie’s millmen thoroughly weighed the benefits of better results against higher costs, given that the district’s highest-grade ore contained only minute quantities of precious metals.  This was demonstrated in 1881 during the Bodie Mine’s bonanza, when a ton of rock bore only about 2 ounces of gold and 30 ounces of silver.


The expense of transporting cordwood and a desire to capture silver as well as gold, led Bodie’s millmen to select the Washoe Process, which employed basic crushing, grinding, and amalgamation.  Only enough heat and chemicals were introduced to enhance amalgamation and costly furnaces were omitted.  Ores, such as Bodie’s, that responded to treatment without roasting were considered “free-milling.”  Other districts were less fortunate.  The complexity of their ores required more expensive milling methods, and the mines had to deliver ore high enough in grade to cover the added cost.


            Although the Washoe Process minimized fuel consumption, driving the machinery inside a Bodie quartz mill still required a tremendous amount of energy.  A stationary steam engine furnished motive power, delivered throughout the mill by belts, gears, and shafts.  Steam also supplied heat to hasten amalgamation.  Voracious wood-burning boilers produced the steam, and their fuel requirements were considerable.  At the Bulwer-Standard mill, four boilers burned 11-1/2 cords every 24 hours to power 30 stamps, 24 pans, 8 settlers, and 2 agitators.  Two boilers in the Standard mill consumed 7 cords every day running 20 stamps, 16 pans, 8 settlers, and 2 agitators.


Washoe Process.  Equipment for the Washoe Process was readily available from manufacturers in San Francisco, Chicago, New York, and New England.  San Francisco, however, delivered most of the milling equipment employed in California and Nevada.  Each manufacturer endowed its products with special features and claimed its designs were the most effective.  Despite differences in detail and heralded improvements, milling machines were essentially the same.


            Mining companies built quartz mills on hillsides, preferably below the mines, so that ore wagons traveled downhill to dump their heavy cargo.  Bins above the mill held enough rock to sustain milling during lapses in shipments.  Ore from the bins then moved through the mill almost entirely by gravity.


            Rock Breaker.  The first step sorted the ore by size.  Fist-size rocks (2-1/2 inches in diameter) and smaller fell between parallel iron bars that formed a “grizzly.”  Rocks too large to pass through the grizzly were broken, either with sledge hammers by hand or by a mechanical rock breaker.  Most rock breakers at Bodie were “jaw crushers” designed by Eli Whitney Blake (nephew of inventor Eli Whitney), whose products had been in California quartz mills since 1861.  Blake’s rock crushers possessed a fixed jaw facing an opposing, powerful reciprocating jaw.  Positioned at converging angles similar to a “V” with an adjustable opening at the bottom, the jaws caught rocks too large to pass between them.  A short closing motion by the reciprocating jaw fractured even the hardest rock.  When the reciprocating jaw moved back, rock fragments fell through or were caught between the jaws, then shattered on the next closing motion.


            Stamps.  Correctly sized ore fragments dropped into another bin inside the mill, after which a mechanical ore-feeder fed them into a cast-iron “mortar” in which huge stamps rose and fell.  The largest stamps at Bodie, installed at the Noonday mill in 1881, weighed 950 pounds each and dropped almost 100 times per minute.  Depending on rock hardness, stamp weight, and drop frequency, one stamp crushed about 3 tons of ore in 24 hours.


A “battery” referred to a group of stamps contained within one mortar, plus all their mechanical components and supporting timbers.  Most batteries comprised five stamps side-by-side, though some batteries contained two, four, or even seven stamps.  Batteries were placed end-to-end in a row.  The Standard’s 20-stamp mill contained four end-to-end batteries, each with five stamps.  The 30-stamp Bulwer-Standard mill ran two parallel rows of three, five-stamp batteries end-to-end—essentially two 15-stamp mills back-to-back.


Water flooded the mortar as pounding stamps pulverized the ore.  Because the stamps’ reciprocating action pushed and sloshed the ore and water mixture, mill operators strove to find a drop sequence that would not starve one stamp and choke another.  Opinions flourished about the best sequence, a persistent subject of debate among millmen.


            Wire cloth or a perforated iron sheet called a “screen” covered the mortar’s discharge side, allowing only correctly sized particles to escape the pounding stamps.  Particles passing through the tiny apertures varied from about poppy-seed size (0.030 inch) to very fine dust.  Because one side of each mortar was essentially porous, quartz mills required an abundant and reliable water source, the primary concern in choosing a millsite.  The Standard mill used 1,300 gallons of water for every ton of ore crushed, and supplying enough water became problematic.  Completed in July 1877, the Standard mill drew water from a nearby spring, which quickly proved inadequate.  In October 1878 a 4,500-foot pipe tapped a second spring to the north.  Supplementing these sources in July 1879, the company constructed a reservoir atop the hill to receive water pumped from the Mono Mine.  After the Mono closed in July 1880, the Standard pumped water from its own main shaft, beginning in November, and sent it through the Bulwer Tunnel to the Standard and the Bulwer-Standard mills.  After industrial-scale mining ceased in 1913, a well dug in the millyard provided water during the mill’s final years.


Settling Tanks.  Sluices or “launders” directed the watery, sandy mixture, known as “pulp” (as in “beaten to a pulp”), from the batteries to rectangular wooden tanks, where the heaviest particles settled to the bottom, forcing excess water over the rim.  This overflow carried away very small dust-like particulates, such as clay, silt, and fine sand that were slow to settle.  Called “slimes,” the murky water also contained gold and silver sulphurets that remained in suspension.  Allowing sufficient time for the miniscule particles to settle delayed milling and conflicted with the overriding urge to move as much ore through the machinery as quickly as possible.  Believing that clay and silt also inhibited amalgamation, mill operators willingly discarded slimes despite assays showing that values could be substantial.


            After slimes and excess water had been removed from the crushed ore, pulp remaining in the settling tanks was now the consistency of mortar.  Laborers then hand shoveled the “thickened” pulp from the settling tanks into amalgamating pans.


            Amalgamating Pans.  Central to the milling process were the pans.  Developed in 1858 to amalgamate gold-bearing ores from California’s Mother Lode, amalgamating pans were quickly adapted to handle Nevada’s difficult silver ores.  “Washoe Pans” designed for Comstock mills were cylindrical cast iron vessels from 4 to 6 feet in diameter, about 2 feet deep, equipped with heavy horizontal revolving arms called “mullers” whose “shoes” ground the crushed ore against the pan’s bottom, much like a pharmacist grinds medicines with a mortar and pestle.  Mullers driven by a revolving vertical shaft rotated about 70 revolutions per minute.  A handwheel adjusted the abrasive force.  Pans reduced the pulp to a smooth, impalpable slurry, preparing the valuable particles for amalgamation by breaking away rock and increasing exposed metallic surface areas.  Millmen also believed that the abrading action cleaned and brightened metallic surfaces, encouraging amalgamation.


            Because heat accelerated amalgamation, steam injected into the pans elevated the pulp’s temperature almost to the boiling point.  After the desired temperature had been reached and fine grinding completed, a handwheel raised the muller, which continued swirling as mercury was added to the mixture.  Chemicals to facilitate amalgamation were also introduced, including hydrochloric acid, potash, nitric acid, sulfuric acid, soda (from marshes on Mono Basin), and no doubt an occasional cigar butt or a spattering of tobacco juice.  Most effective, however, were salt and sulfate of copper (bluestone).  Fine grinding, heating, and prolonged exposure to mercury required 5 to 8 hours for each charge.  During this time, most of the ore’s precious metals infiltrated the mercury, to be recovered later.


            Settlers.  High-pressure water flushed the mercury-saturated pulp from the pan through a pipe into a large vat called a “settler.”  Also known as a “separator,” the device was aptly named because it separated the gold- and silver-rich amalgam from water and ground waste rock by allowing the heavier particles to settle.  Settlers were cylindrical tanks 7 to 10 feet in diameter, 3 to 6 feet deep, often made of wood with cast iron bottoms.  Revolving mullers gently stirred the pulp about 12 to 15 revolutions per minute.


            Slow stirring facilitated separation, assuring that the dense amalgam (quicksilver, gold, and silver sulphurets) worked its way downward while lighter waste material (very fine rocky particles and water) rose.  Amalgam collecting on the settler’s bottom drained through an inverted siphon into a receiving tank that was safeguarded by lock and key.  Operators carefully controlled the amount of water and the stirring speed.  If the pulp were too thick, or agitation too violent, the valuable metals remained suspended.  Too much water or excessively slow stirring allowed ground rock to settle with the amalgam.  Separation in settlers required 2 to 4 hours, after which holes in the vat’s side drained off depleted pulp.  Because settlers were larger than pans and required less time, one settler usually handled charges from several pans.


            Agitators.  After settlers had removed a large percentage of the gold- and silver-laden amalgam, many mills subjected the pulp to another settling machine called an “agitator” to extract even more amalgam.  Agitators were similar to settlers, though larger, usually 8 to 12 feet in diameter, 3 to 6 feet deep, and the pulp flowed through them continuously instead of in charges.  A muller rotating about 12 revolutions per minute gently stirred the pulp.  Quartz mills usually contained fewer agitators than settlers, because agitators required less time and handled more pulp.  After agitators had removed the last bit of amalgam, the outflow known as “tailings” discharged into “tailings ponds.”  Meanwhile, assayed samples from points along the way monitored the mill’s effectiveness.  Given this information, operators carefully employed experience, intuition, and ritual to adjust the mill’s machinery and optimize yield.


            Cleanup Pan.  About once a month, or after completing a shipment of ore, the mill’s machinery was stopped, disassembled, and carefully cleaned.  Workers scraped and washed pulp and amalgam from surfaces and gathered gold nuggets from the mortars.  Recovered pulp and amalgam were carefully treated in a separate “cleanup pan.”  A mill’s “cleanup” could substantially increase the value of an ore shipment, and anxious mine managers and investors eagerly awaited results.


            Retort.  After the amalgam had been strained through chamois or flannel filters to remove excess mercury, a special furnace or “retort” reached 675 degrees Fahrenheit to boil away remaining quicksilver.  Sealed to prevent vaporized mercury from escaping, the retort condensed highly toxic mercury gases, permitting liquid quicksilver to be reused by the mill.  Mercury was expensive, and millmen taxed their abilities to improve its retention.  Nonetheless, some quicksilver always wound up in the tailings.  Mercury loss was a constant concern, and replacing it cut significantly into profits.


            Melting Furnace.  “Sponge,” the product of retorting, consisted of mercury-free gold and silver.  A coke-fired “melting furnace” exceeding 2,000 degrees Fahrenheit melted the sponge in crucibles, from which a gold and silver alloy was poured into molds to form bars of “bullion.”  After cooling, the solid bars were shipped to the U.S. mint, either in Carson City or San Francisco, where precise testing determined the value of each bar.  During Bodie’s boom, an average bar of bullion contained about 23% gold by weight, 73% silver.  After the mill’s owners received payment and subtracted their cut, the remaining funds went to the mining company, where expenses were subtracted and investors hoped to realize a dividend.


            After the ore had been crushed, ground, heated, amalgamated, settled, agitated, retorted, and melted into bullion, one might assume that everything of value had been removed.  But despite the best intentions of manufacturers and operators, mills missed a large percentage of the precious metals.  Tailings and slimes contained a considerable amount of gold, silver sulphurets, and quicksilver.  Because silver was more difficult to recover than gold, mills treating Comstock silver ore routinely missed between 25% and 35% of the ore’s assay value.  Bodie’s mills, handling ore higher in gold content, missed only about 10% to 20% of the values.


            Mill owners, according to tradition, owned tailings and slimes:  “. . . that which was caught inside the [mill] building belonged to the mine, whatever was caught outside belonged to the mill.”  (Engineering and Mining Journal 14 February 1891, 206)  Assays revealed that tailings ponds often contained substantial values, inspiring millmen to discover ways of profiting from wasted material.  Periodically tailings and slimes were excavated, then run through the mill again.  Second parties also worked tailings, either purchasing the material or agreeing to pay a percentage of their yield to the mill owners.  These operators dug and hauled tailings to “tailings mills” that employed machinery similar to an ordinary quartz mill.  Stamps, however, were unnecessary because tailings had already been finely ground.  Bodie’s two tailings mills were rudimentary affairs, employing only amalgamating pans, which doubled as settlers.  Boilers produced steam to power mullers and heat the amalgam.  Thereafter, blanket sluices took advantage of high specific gravities to catch gold, silver sulphurets, and mercury that had eluded amalgamation.


Boss Continuous Process.  The Washoe Process remained Bodie’s primary ore treatment method through 1890.  One exception was the Noonday mill, which adopted an experimental variation.  Just five months after the 30-stamp mill was completed in 1880, its machinery was rearranged into the “Boss Continuous Process.”  Patented the following year, the process Marvin P. Boss tested at Bodie promised to automate milling and improve returns, especially from poor ore.  Boss reduced the amount of water in the stamp batteries, permitting him to do away with the slow, labor-intensive settling tanks that lost a high percentage of the ore’s value as slimes.  Instead, crushed ore flowed from the stamps into the first pan of a series.  Subsequent pans, settlers, and agitators, connected in sequence, allowed the pulp to pass from one machine to the next, flowing continuously through each.  The first pans ground the crushed ore progressively finer while incrementally increasing its temperature.  Quicksilver and chemicals were added about midway, after which more pans effected amalgamation.  Separation occurred as the finely ground ore, water, and mercury mixture passed through settlers then agitators, each drawing off amalgam through siphons.  Yields improved largely because very fine gold and silver particulates, normally expelled as slimes, were retained.  Mortars equipped with larger than usual screens permitted the stamps to crush more ore in less time, increasing the mill’s capacity.  The process also lessened manual labor and reduced fuel costs.


            The continuous process’s major benefits turned out to be drawbacks.  Because of its inherent inflexibility, the system was only practical in mills that ran steadily on ore with uniform properties.  As a matter of survival, most mills at Bodie crushed ore from different mines, and their millmen preferred the Washoe Process’s versatility.  No mill at Bodie, other than the Noonday, adopted the continuous system until the Standard mill’s renovation a decade later.


Combination Process.  When the Standard Company renovated its 20-stamp mill in 1890, it adopted Boss’s continuous process to augment a new ore treatment method introduced by Superintendent Arthur Macy, a recently hired college-educated mining engineer.  Based on scientific theory and meticulous calculations, Macy selected a combination of machines that increased the mill’s volume, improved yield, and reduced fuel costs.  Macy’s informed modifications began a new chapter in Bodie’s history by demonstrating that profits could be made from ore so poor that it had been left underground.  Mills, such as the renovated Standard, were called “combination mills,” because they integrated components with specific capabilities.  Macy outfitted the mill with amalgamating plates and mechanical concentrators, a distinctive combination that was becoming so pervasive in California that within the decade mills employing it would be known as “California Mills.”  At the Standard, however, Macy retained the old Washoe equipment.  Pans, settlers, and agitators, configured into the Boss Continuous Process, supplemented the new design.  Ore fed through the rock breaker and stamps as before, but one significant change was made to the batteries.  The mortars were fitted with punched tin screens containing holes equivalent to a 40 mesh wire screen (0.017 inch), half the size of their predecessors and only about the diameter of a grain of salt.(2)


            Amalgamating Plates.  Crushed ore splashing around inside the mortars washed through the screens then flowed over long inclined copper sheets that had been plated with silver then coated with quicksilver.  Flowing pulp spread over the entire plate, streaming downward in waves that rolled the sandy particles over the surface.  Particles of metallic gold adhered to the mercury coating, forming an amalgam. Captured gold was often referred to as “coarse gold,” a term somewhat misleading because everything leaving the battery was smaller than a grain of salt.  Workers periodically stopped the batteries, called “hanging up the stamps,” and shut off the water.  They scraped the putty-like amalgam from the 9-1/2-foot-long copper plates and retorted it, recovering about 80% of the ore’s gold.  They re-coated the plates with mercury and restarted the stamps.


Pulp, after flowing over the plate, still contained sulphurets that had not been captured.  The sandy substance traveled through pipes to machines that would recover its silver-rich compounds.


            Concentrators.  During western mining’s early years, “concentration” meant isolating specific particles of crushed ore.  Initially, blanket sluices or riffles caught gold-laden sand missed by a mill’s machinery.  Later, mechanical concentrating devices captured particles dense with valuable compounds, mainly silver.  But these particles required additional treatment to recover their precious metals.  Concentration proved especially valuable in districts where unusually complex ore called for costly treatment or transportation to a distant smelter.  By discarding worthless rock at the mill, only the richest particles, or “concentrates,” received the expensive treatment.


            In 1864 patented concentrating machines began offering decided improvements over riffles and blanket sluices.  “Concentrators” combined the forces of gravity, washing, shaking, and surface tension in ways that persuaded light waste particles to migrate in one direction while heavy particles containing the desired metals moved in another.  At least one early model subjected a 5-foot diameter dish of water and crushed ore to simultaneous rotating and oscillating motions that were so similar to a prospector panning gold that the resemblance became its chief selling point.


            By 1882 concentrators were manufactured in a bewildering number of designs, each guaranteed by its manufacturer to be superior.


There are end-shake and side-shake machines and those which oscillate. . . .  Some have slow motions, others run rapidly--in fact, almost every conceivable device to effect a separation of heavy minerals from the light can be found already in existence, and others continue to arrive with astonishing frequency.  (Mining and Scientific Press 4 November 1905, 305)


            One popular concentrating machine, patented in 1867, consisted of a slightly inclined shaking table over which a broad rubber belt moved.  Also known as a vanner, from the Cornish word “van” that describes testing crushed tin ore by washing a sample in a shallow bowl-shaped shovel, the machine applied appropriate forces to crushed ore travelling on the belt.


The distributor spreads the pulp evenly over the surface of . . . the belt, which is moving continuously up hill or toward the head of the machine.  The side shake or lateral motion given the bed causes the sulphurets and valuable metallic portions of the ore to settle and lie upon the surface of the belt, and, as they pass up hill . . . they come under the water box delivering clear water in fine streams upon the belt; and, as the pulp passes through these streams, the worthless or lighter portion of the ore is . . . washed from the valuable portions, and passes down the belt into the tailings sluice.  The valuable portions of the ore, which still adhere to the belt, pass on over the head . . . and deposit themselves in [a] small box. . . .  When the small box is filled with sulphurets it is removed and another substituted, thus making the process of concentration continuous and automatic.  (Engineering and Mining Journal 11 July 1896, 29)


            Concentrators worked exceptionally well, and having proved themselves elsewhere were first tried at Bodie in 1881.  Manufactured according to William B. Frue’s design, the two vanners installed in the Silver Hill mill to concentrate sulphuret ore from the Oro Mine were technically a success, but the closest smelter was the Selby works in San Francisco.  Drying, sacking, and shipping concentrates, plus the smelter’s fee, exceeded the ore’s yield and the machines were dropped.  Nine years later Arthur Macy re-introduced Frue vanners when he overhauled the Standard mill.


            Macy avoided paying transportation and smelting costs by treating concentrates locally at the Standard mill, where concentrates yielded tolerable profits when subjected to lengthy and extraordinarily harsh chemical treatment in an amalgamating pan and settler that were “specially adapted [for] slow treatment.”  (Mining and Scientific Press 7 May 1892, 358)


After amalgamating plates had recovered the coarse gold and vanners collected the sulphurets, the old Washoe pans and settlers, rearranged into the Boss Continuous Process, ground, heated, amalgamated, settled, and agitated the pulp as it flowed from one machine to the next.  The outdated machines recovered the last bit of value before discharging the waste into the tailings ponds.


            Four years later Macy’s successor at the Standard, Thomas H. Leggett, brought in the cyanide process and removed the mill’s pans and settlers.  Thereafter, cyaniding became a critical step in the ore treating process, a huge improvement over pan amalgamation.  The Washoe and Boss processes were gone, but one pan and a settler remained to handle concentrates.  The combination of plate amalgamation and mechanical concentration, followed by cyaniding, worked so well that it was reproduced in 1899, when the Standard mill that survives today at Bodie State Historic Park replaced the original mill destroyed by fire.


Amalgamating Plates Alone.  After Bodie banker J. S. Cain took over the Standard Company’s property in 1915, the milling process changed again.  Cain decided not to oversee mining ventures himself.  Instead, he threw open the mines to leasing.  During the ensuing two decades, most of the ore crushed in the Standard mill had been mined by small-scale lessees, locally known as “leasers.”  These two- or three-man operations rarely produced enough rock to sustain the mill more than four or five days at a time, even though only 10 of the mill’s 20 stamps were operational—kept working with parts scavenged from the northern two batteries.(3)  The mill also stood idle for long periods between ore shipments.  The mechanical concentrators and cyanide plant were abandoned, reflecting the expense of running a high-volume process and the financial constraints on Bodie’s residents of that era.  Avoiding what they called “sulfide rock,” leasers selectively mined ore that they thought was rich in gold and would pay the highest return considering their limitations.  They also felt that silver was of little value because it diluted their gold bullion.  Plate amalgamation alone recovered about 80% of the ore’s assay value.  Because sulphuret ore was avoided, a shift occurred in the ratio of gold to silver in the bullion.  During this period, which lasted until the mill ran for the last time in 1935, Bodie’s bullion contained about 60% gold by weight, 40% silver.





1.      One exception was an experimental chlorine gas and lime solution leaching plant built on Booker Flat in 1884 to treat tailings from the defunct Noonday mill.  Preliminary tests led to construction of a 40-ton per day plant that ran without roasting furnaces.  Sketchy documentation suggests the operation lasted until 1889.  The degree of success is unknown, but the process was not adopted by any other Bodie mill.  (Mining and Scientific Press 22 November 1884, 328; Engineering and Mining Journal 22 November 1884, 351; California State Mining Bureau 1890, 337-338)


2.      Copper plates covered with mercury had been used on the Mother Lode for years to capture free gold from quartz ore, but the plates tended to be only about 20 inches wide and were known as amalgamating “sluices.”  The Standard mill’s new design employed plates about 4 feet wide, or the full width of the battery.  The Standard also departed from the Mother Lode’s practice of  battery amalgamation” by not introducing mercury into the mortar during stamping.


3.      Between 1929 and 1931, the highly financed mining conglomerate Treadwell-Yukon reopened the Red Cloud Mine and repaired the Standard mill.  The company added Union concentrators to handle the south end’s sulphuret rock and built an ore bin on the hill behind the mill to receive rock delivered by truck.  A new wooden trestle conveyed ore in mine cars to the mill, replacing the inclined trestle that once delivered ore from the Bulwer Tunnel.





“Amalgamating Mills.”  Engineering and Mining Journal  (New York, NY), Part 1, 30 August 1884:  139-140; Part 2, 6 September 1884:  157-159; Part 3, 13 September 1884:  172-175.


“Amalgamation at the Comstock Lode, Nevada.”  Engineering and Mining Journal  (New York, NY), Part 1, 14 February 1891:  205-206; Part 2, 21 February 1891:  231-233.


Bell, Robert T. (Bobby).  Prospector, miner, mill operator, and former resident of Bodie.  Personal interviews by author.  27-30 August 1994, 9-11 June 1995, and 7-8 June 1996.  Telephone interviews. 27 February 19954 November 2002.


“A Bodie Gold Stamp Mill.”  Engineering and Mining Journal  (New York, NY), 27 June 1896:  615-616.


Browne, J. Ross, and James W. Taylor.  Reports upon the Mineral Resources of the United States.  Washington, DC:  Government Printing Office, 1867:  21-77.


California State Mining Bureau.  Tenth Annual Report of the State Mineralogist, for the Year Ending December 1, 1890.  Sacramento, CA:  Superintendent of State Printing, 1890:  336-338.


“Correspondence Describing the Boss Continuous Process.”  Financial and Mining Record  (New York, NY), 26 November 1887:  342-343.


De Quille, Dan [William Wright].  The Big Bonanza.  1876.  Reprint, Las Vegas, NV:  Nevada Publications, 1982.


Eakle, Arthur S., Emile Huguenin, and R. P. McLaughlin.  Mines and Mineral Resources of Alpine County, Inyo County, and Mono County.  Sacramento, CA:  California State Printing Office, 1917.


Egleston, Thomas.  The Metallurgy of Silver, Gold, and Mercury in the United States.  New York, NY:  John Wiley & Sons, 1887:  Part 1, 38-65, 349-481; Part 2, 544-551.


Johnston, George.  Brief History of Concentration and Description of the Johnston Concentrator.  In California Mines and Minerals.  San Francisco, CA:  California Miners’ Association, 1899:  439-441.


Hague, James D.  Mining Industry.  Washington, DC:  Government Printing Office, 1870:  197-258.


Hammond, John Hays.  The Milling of Gold Ores in California.  In California State Mining Bureau.  Eighth Annual Report of the State Mineralogist, for the Year Ending October 1, 1888.  Sacramento, CA:  Superintendent of State Printing, 1888:  718-725.


“Milling at Bodie.”  Mining and Scientific Press  (San Francisco, CA), 7 May 1892:  338.


“Pan Amalgamation--The Boss Continuous Process.”  Mining and Scientific Press  (San Francisco, CA), 14 September 1889:  201, 208.


Raymond, Rossiter W.  “The Washoe Pan Amalgamation.”  Statistics of Mines and Mining in the States and Territories West of the Rocky Mountains.  Washington, DC:  Government Printing Office, 1872:  392-402.


________.  “A Glossary of Mining and Metallurgical Terms.”  Transactions of the American Institute of Mining Engineers 9,  Easton, PA:  Institute of Mining Engineers, 1881:  99-192.


Smith, Grant H. “Bodie: The Last of the Old-Time Mining Camps.”  California Historical Society Quarterly  4 (March 1925):  64-80.


“Treatment of Tailings.”  Mining and Scientific Press  (San Francisco, CA), 30 April 1892:  315.


Trent, Dee D.  Letters to author, 25 January 1998; 4 March 1998.


U.S. Department of the Interior.  Census Office.  Chapter 5, “Amalgamating Mills.”  Volume 8, Statistics and Technology of the Precious Metals, by S. F. Emmons and G. F. Becker.  Tenth Census of the United States (1880).  Washington, DC:  Government Printing Office, 1885:  242-269.



More Essays